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ABSTRACT 
We discuss the use of the Moon as a passive reflector for radio interferometry experiments with baselines 

on the order of the radius of the orbit of the Moon. Because of the extreme loss in the lunar interferometer 
path, only exceptionally strong point sources are candidates for this kind of interferometry. As the Moon is 
far from an ideal reflector due to the irregular surface, the data processing necessary to optimize the fringe 
detectability is rather complicated. We describe the optimum processing procedure and compute the signal-to- 
noise ratio for these processors. Two specific applications are discussed, one being the spatial resolution of 
Jupiter bursts, the other the resolution of the H20 maser at 22 GHz in Orion. We show that both experi- 
ments are definitely possible with existing (Arecibo) or currently planned telescopes (Green Bank). 
Subject headings: interferometry — radio sources: general 

I. INTRODUCTION 

The use of a passive reflector to produce interference fringes has been applied in various forms in radio observations for some 
time. The sea (or “cliff”) interferometer is an early example of the application of this method to resolve radio sources (for a 
description and references, see Thompson, Moran, and Swenson 1986, chap. 1). Making use of the Moon as a passive reflector in an 
extremely high resolution interferometer was discussed in the late 1960s at MIT Lincoln Laboratory in connection with the 
extensive radio and radiometric investigations of the Moon then taking place there. The implementation of the experiment, first 
suggested for OH emissions from W3, was abandoned then because it was felt that the signal-to-noise ratio would be too marginal 
for fringe detection. Since then the idea has been revived by A. E. E. Rogers (1986, private communication) for possible studies of the 
extremely strong H20 emission from Orion (Reid and Moran 1988). One of us (J. A. P.) has also proposed to use this technique to 
try to spatially resolve S-type Jupiter bursts (Carr, Desch, and Alexander 1983). The Moon interferometer idea has also been 
suggested by Soviet scientists (Artyukh and Shishov 1982), who gave a relatively crude analysis of the problem upon which we wish 
to expand. So far the scheme has not found any successful applications and can best be described as a technique seeking a problem. 
It appears, however, that for the two applications mentioned above there is a realistic hope of positive results. As the method is of 
marginal sensitivity, we shall discuss in this paper the various problems which arise and how they may be minimized for optimum 
sensitivity. 

If the Moon were a perfectly reflecting smooth sphere, it would be quite straightforward to assess the performance of such an 
interferometer. However, the lunar material is far from a perfect reflector. The surface may be considered as a nearly lossless 
dielectric with a dielectric constant of ~2.7, varying somewhat with the observing frequency. The reflectivity will change with angle 
of incidence and, furthermore, will depend on the polarization of the wave measured relative to the limb of the Moon. More serious 
complications arise because the lunar surface is not smooth. Instead of the return coming from a Fresnel zone centered on the 
geometric reflection point, the actual reflections arise from a large number of specular points associated with individual irregu- 
larities. The returns will be distributed over a sizable fraction of the lunar surface and will also be spread in time delay. This reduces 
the correlation between adjacent frequency components in the signal spectrum and means that the effective bandwidth for coherent 
processing is limited. Further problems arise because the Moon is in rotation due to physical and apparent librations. This small 
rotational motion brings about differential Doppler effects which cause the output signal of the interferometer to fade both in 
amplitude and phase. This fading limits the time span available for coherent integration. 

It is the purpose of this paper to discuss in some detail the principles of such interferometry experiments and to establish the lower 
limits of the flux required of a point source in order to detect fringes as a function of the frequency of observation. We begin by 
considering the simplest case of the Moon modeled as a smooth dielectric sphere. We then proceed to regard it as a rough sphere 
capable of reflecting at a range of different time delays. Finally we take into account the effect of librations which make the reflected 
signal vary with time and set limits on the time span for coherent integration which depend on time delay. In the final discussion we 
establish the lower flux limits for point sources as a function of the parameters of the experiment, and in particular consider the 
Orion H20 emission and the Jupiter 5-bursts. The latter experiment will be considered in greater detail in a separate paper 
describing some actual observations now being carried out at the Arecibo Observatory. 

II. THE SMOOTH MOON 

In this section we shall first compute the effective interferometer baseline, assuming the Moon to be a perfect sphere. We then 
compute the complex cross correlation of the direct and the reflected signals, and the effective signal-to-noise ratio of the detected 
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fringes for given system temperatures of the two antenna systems used. The effective system noise of the antenna viewing the 
reflection point on the Moon may be dominated by the thermal emission from the Moon, and since the two antennas are likely to be 
of different effective apertures it is necessary to decide which of the two antennas to use for the Moon reflected signal. For the 
dielectric sphere we determine the dependence of fringe visibility on angle of incidence and polarization. 

Figure 1 shows the geometry of the two rays used. In Appendix A we derive an expression for the effective baseline and conclude 
that it is equal to AB in Figure 1. An approximate expression for this baseline is 

D = Rm sin (/)- , (1) 
1 + COS 0 

where Rm is the distance to the center of the Moon, a is the radius of the Moon, and 0 is the angular distance between Moon and 
source. 

If the angular separation between the Moon and the source exceeds ~2°, the effective baseline will be greater than Earth’s 
diameter. The longest achievable baseline using the lunar interferometry method equals the Moon’s orbital radius (3.8 x 105 km), 
when the source and the Moon are separated by 90°. 

Assume that a plane wave of flux density S0 is incident on the Earth-Moon system. The wave arriving along the indirect path will 
have a flux density given by 

Sm = \pmm
2S0a

2/4R2
m = a

2S0, (2) 

where />m is the lunar reflection coefficient. This means that the field in the indirectly arriving wave is reduced in the ratio 
a = I pm(<j)) I a/2Rm or by a factor of about | /?m(0) 12.26 x 10" 3 as compared with the direct wave. For pm we may use either of the two 
Fresnel reflectivities: 

/>llW>) = 
e sin 0/2 — yje — cos2 0/2 

e sin 0/2 -F ^/e — cos2 0/2 
pm = 

sin 0/2 — ^/e — cos2 0/2 

sin 0/2 + yjz — cos2 0/2 
(3) 

where e ä 2.7. The || and the _L indices refer to the plane containing the source, the lunar reflection point and the observer. Figure 2 
shows the Fresnel coefficients as functions of 0 and of the effective baseline length. Clearly, the strength of the reflected signal will be 
enhanced for geometries with_grazing incidence. 

The complex correlation of the signals received in the two antennas, one pointed at the Moon and the other at the source, will be 
reduced by the factor a. Let the antenna signals from the direct and the indirect paths be denoted by e^t) and ae2(0> respectively. 
The voltage e2(t) is the signal one would obtain from antenna 2 if it were placed at point A1 in Figure 1 and pointed directly at the 
source. We avoid the single- or double-sideband complications introduced by superheterodyne mixing by dealing with the antenna 
signals directly. Our procedure, therefore, corresponds to single sideband reception. The total signals from the two antennas, 

Moon 

BASELINE , UNITS OF LUNAR ORBITAL RADII 
Fig. 2 

Fig. 1.—The geometry used to derive the effective baseline 
Fig. 2.—The two Fresnel reflection coefficients plotted as a function of the effective baseline 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
90

A
pJ

. 
. .

36
2.

 .
30

8H
 

HAGFORS, PHILLIPS, AND BELKORA Vol. 362 310 

including additive noise of whatever origin, will be represented as 

direct f^t) = e^t) + n^t), reflected f2(t) = <xe2(t) + n2(t). 

For a point source at infinity, and assuming identical antenna impedances, we have 

eÁt - ej , (4) 

where 0m « Rm(l — cos (¡))/c is the extra delay in the indirect path, and where Al and A2 are the two antenna apertures. 
The complex covariance of/i(i) and f2(t) at time delay 6m becomes 

<rc(0J> = + 0J> = <A(t)f*2(t + ejy, (5) 

where <• * •) denotes averaging over the signal ensemble, and where we have made use of the fact that the two noise terms are 
uncorrelated. In practice we estimate the ensemble average from a finite (coherent) time average over the interval of observation T0 : 

rAOJ = T fV ejdt = ^ \T°mm + ejdt io Jo io Jo 
(6) 

which is an unbiased estimator of + 0m)>. 
By virtue of the central-limit theorem (see, e.g., Papoulis 1965), rc(0m) is a complex Gaussian random variable with a mean given 

by equation (5) and with a variance : 

<| Arc(0J|2> = ¿ P r°<| A |2><| f2 l2)Pl(t - t')p2(t - t')dtdt' , (7) 
1 0 Jo Jo 

where and p2 are the normalized autocorrelation functions of/i and /2, respectively. If the power spectra oifx and f2 are both 
limited to a bandwidth B, and both have constant power density within that band, then 

Pi(t - t')p2(t - f) = 
isin — i')] 
{ nB(t — tr) 

2 
(8) 

In this particular case we obtain 

<| Arc(0J|2> = -^ <| /t |2><| f21
2> . (9) 

£>10 

The (coherent) ratio of the signal to noise becomes 

/sA <rc(0J) «<gi(t)e^(t + 0J) JbTq 

\no/c y<|Arc(0J|2> VOA^XIAI2) 

If the flux density of the source in the observed polarization is S0/2 (the flux density of a source is usually given as the sum of the flux 
density of both polarizations), and the effective aperture of the antenna pointed at the source is Al9 and that pointed at the Moon 
A29 the received power per polarization in the two antennas will be 

Wsl = BA1S0/2 = <K |2>/Z , Ws2 = cc2BA2 S0/2 = «2<| e2 |2>/Z , (11) 

where Z is the impedance assumed the same for both antennas. The additive noise powers in the two antennas are 

Wnl = BkT, = <1 Wl |2>/Z , Wn2 = BkT2 = <1 n2 |2>/Z , (12) 

where/c is a Boltzmann’s constant, 1.38 x 10 23J/K. 
For the signal-to-noise ratio we obtain 

£l 
«0 
 ocffp yAi A2  

(Aj Sq -h 2kTi){cc2A2 S0 + 2kT2) 
VbTo- (13) 

In the Moon path we always expect the signal power to be much less than the noise power, i.e., a2A2S0 2kT29 leading to the 
following simplification : 

II 
"o 

qSo \/ Ai a2 

-s/(2kT1 + At S0)2kT2 
^BTo- (14) 

If, furthermore, the signal power in the antenna pointed directly at the source is well above the noise level, i.e., 2kT1 50, we 
obtain 

si ^ ISqAi 
n0 

a V 2kT2 
sßT0, (15) 
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Hence, as long as the conditions stated above apply, the signal-to-noise ratio depends only on the ratio A2/T2 of the antenna pointed 
at the Moon. Clearly, in this case the antenna with the highest value of this ratio should always be used for the Moon path. 

In order to obtain an idea about the viability of this method for the two examples quoted above, consider first some representa- 
tive numbers for the Jupiter burst experiment. Jupiter bursts have not yet been resolved with Earth-based interferometers, and the 
determination of the size of the emitting region remains an important clue as to their physical origin. In an experiment currently 
underway at the Arecibo Observatory, we are using a four-element cross Yagi at 25 MHz to observe S-bursts from Jupiter. The 305 
m dish is used to observe the lunar reflection. If the burst has a strength of pM Jy we have the following parameters : 

S0 = p x IO-20 W m-2 Hz-1 , Ai = 115 m2, 

/42 = 2 x 104 m2 , 7; = r2 = 2 x 104 K , 

a = 2 x 10“3; 

Ti and T2 are the galactic background temperatures at 25 MHz; the contribution from the thermal noise of the Moon is completely 
negligible at this frequency; a was computed assuming a lunar reflection coefficientpm = 0.71 corresponding to <£ = 15° and e = 2.7. 
In this case we have 

— « 0.08 
"0 

P 
\/l + 2p 

where we estimate the added system temperature from Jupiter bursts to be 4 x 104 pK assuming an antenna gain of 0.04 K Jy '1 for 
the Yagi antenna. We see that for weak bursts the signal-to-noise scales as p but for very strong bursts only as p1/2. The S-bursts 
normally come in quasi-periodic pulse trains lasting 1 or more seconds. The duration of an individual burst is typically 10 ms. For a 
train of 5-bursts lasting one second a signal should be detectable at the ~6 cr level, assuming a bandwidth of 10 kHz and a mean 
strength of 1 MJy. A typical “storm” may consist of several hundred such burst groups so the signal-to-noise can be further 
improved by averaging the correlation from many groups incoherently. Clearly, there are complications with the coherent integra- 
tion if the source moves during a burst train. Nevertheless, as p is often in the range 1-10, we believe the experiment may give 
positive results. We shall show below that the depth and the fading of the Moon may not be so detrimental at this frequency and for 
such short bursts. 

Consider next the second example, that of the H20 maser in Orion. For an experiment in Green Bank, say, one could use the 140 
foot dish as the source-directed antenna and the planned Green Bank large steerable dish for the Moon observations. Assuming 
gains of 0.1 K Jy-1 and 1 K Jy-1 for the 140 foot and 300 foot antennas, respectively, the following parameters are expected to 
apply: 

50 = 1 MJy , B = 105 Hz , ^ = 300 m2 , A2 = 2800 m2 , 7; = 1 x 105 K , T2 = 250 K , a = 1.4 x 10~3 . 

The system temperature 7^ is assumed to be due to the H20 maser which dominates the sky background and receiver temperatures; 
T2 is the approximate temperature of the Moon; and a was computed assuming </> = 45° and € = 2.7. In this case we obtain: 

— = 60 ^/t}, . 
«0 

The delay spreading and reflectivity variation with time may be detrimental for this observation at 22 GHz, but, as we shall see 
below, detection may still be expected. 

III. THE ROUGH MOON: SPREAD IN DELAY 

In § II the Moon-reflected signal was taken to come from a single Fresnel zone about the geometric reflection point, and the 
reflected signal ae2(i) was considered not to be distorted. Irregularities in the lunar surface cause this Fresnel zone to break up into 
numerous smaller contributions spread over large parts of the surface, and, hence, spread in time delay. We shall defer to the next 
section the discussion of the effects of variation with time of this delay spread echo. The reflected signal now takes the form : 

= a J e2(t ~ 6)mB(6)d6 » (16) 

where mB(0) is a random impulse response, smoothed by the bandwidth of the signal, B, which we shall take to be a zero mean 
complex Gaussian process. It is the (truncated) Fourier transform of the normalized frequency response M(f) of the Moon channel: 

CBI2 
mB(d)=\ M(f)e2nifedf. (17) 

J-B/2 

In the cases considered in the previous section there was complete coherence over the whole frequency band, and the peak in the 
cross correlation versus time delay was determined by the shape of the autocorrelation of the incoming signal alone. For a rough 
Moon, the correlation width in frequency is often much less than the bandwidth of the incoming signal, and the shape of the cross 
correlation function is determined by the coherence function of the Moon rather than by the autocorrelation of the signal. We shall 
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describe the random impulse response of the Moon by the following statistical properties (Hagfors 1961): 

<mB(0)>m = O, ~ <|wíb(0)I2>i 
ÇBI2 

1 = ^ 
J — B/2 

3t(A/) e2*‘VedAf = pB(0), <mB(0)mg(0')>m = <| mB(0) |2>, 

r 

sin nB(e - O') 
nB(0 - O') 

pB(0)dO = 1 . (18) 

We have inserted an index m on the statistical averaging symbol to emphasize that this random process is different from and 
independent of the random process which creates the incoming signal. The frequency correlation, or coherence function, is 
determined by the coherence of adjacent frequencies in the Moon path. The impulse response m(0) and f) are controlled jointly 
by the properties of the lunar surface and of the sharpness of the beam of the antenna pointed toward the Moon. The relative density 
of reflected power with time delay is pB{0). 

Because of the spread in delay we must now form our estimate of the cross correlation of the two signals on the basis of a number 
of separate and independent estimates, one for each delay. Suppose we form a coherent estimate of the cross correlation of/i and/2 
as we did in § II (see eq. [6]), but now for each additional delay öOk separately : 

rc(0m + : 
f ^ em + ôek)dz, (19) 

where 0m is the time delay to the specular point on the Moon. If we take the mean value of this over the signal ensemble, we obtain 

<rc(0m + <50*)> = a(el ef>m*(0m + <50*)A0 . (20) 

The m(0m + d0k) is the value of the random impulse response in the vicinity of the delay 0m + ô0k and AO = 1/B is the delay 
resolution interval. As m is a zero mean random process, further coherent averaging of rc over the Moon ensemble is futile (i.e., 
«^>>1»! = 0). However, information on <ex ) is contained in | rc|

2 because 

«kcl2»m = ^<|mJ2>m + <72, (21) 
where 

= a2 I <*! e*2y I2 A02 , a2
0 = <1^ |2><| f2 \2>/BT0 . 

The unbiased estimator of | e|> |2 f°r the time delay ô0k, therefore, is 

(\<e1e*2}\2)Ek = - 
r r* 1 c ’ c 

a2<l»»J2>mA02 ' 

The variance of this estimator of Kci ef ) I2 when the correlation is zero, i.e., the background “ noise,” is given by 

a2 ((rc r* — Oq)2) 
(a2<K|2>mA02)2 (a2<|mJ2>mA02)2 

(22) 

(23) 

If one were to make an estimate of the actual value of the correlation the variance ought to be computed with the correlation set 
equal to the actual value, different from zero. Here we shall only be concerned with the detection of a correlation, and, therefore, use 
the variance with zero correlation. 

The weighted average estimate, taking all the individual delay estimates into account, becomes 

(\<e1e*2y\\= I &(l<Ge!>l2)E*. (24) 

The overall estimate with the least variance is obtained by choosing the weights proportional to the inverse of the individual 
estimates of the variances, in other words: 

ßk E ¿ = T5 = -7(a2<lm*l2>m
A02)2 • 

z = 0 Aj Afc (Tq 

With this choice of weights the overall variance becomes 

1 
^ A2 

k = 0 
A2 = (£¿) =SM£<|m‘|2> 

The final signal-to-noise ratio corresponding to the coherent one as given in equation (10) becomes 

s¡_ 
”0 "0/c 

A04 I (Im*!2)' 
1/4 

(25) 

(26) 

(27) 

Rather than further discuss this unrealistic model, where the coherent integration interval equals the total observing time, we shall 
proceed to the more realistic case where the coherent integration interval is determined by the time variation of the lunar echo due 
to the librations. 
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IV. THE ROUGH MOON : TIME VARIATION AND SPREAD IN DELAY 
In the previous section we considered the Moon-reflected signal as resulting from an ensemble of different realization of the lunar 

surface. In reality, because of the variation types of librations of the Moon the response of the Moon path will pass from one 
realization to the next with time, and the impulse response of the Moon path is a time-varying random process. The averaging over 
the Moon ensemble, denoted by in § III, can be estimated as a time average. Instead of equation (16) we have 

e'2(t) = a e2(t — 6)mB(6; t)d0 , (28) 

where mB(0; t) is a random, smoothed, time-varying impulse response. It is the (truncated) Fourier transform of the normalized 
frequency response M(/; i) of the Moon path, and equation (18) is replaced by 

fB/2 
mB(0-, i) = Jl 

J —a/2 
M(f; t)e2nifedf. (29) 

For the random, time-varying impulse response of the Moon we shall assume the following further statistical properties in addition 
to those of equations (19) (Hagfors 1961): 

<mB(0; i)mg(0; t + <T))m = pB(6)pB(e, a) 

J>(A/; a) e2niAfe dA /, 

pB(0, a) e-2**™do , 

wB(0,f)df= 1 (30) 

The function ât(Af; a) is the double autocorrelation function of the time-varying frequency response M(f; t) relating the response at 
frequencies separated by A/and times separated by a, and wB(d,f) is the normalized power spectrum of the return at range 6. 

In this case of a time varying reflector we cannot form rc by integrating over the complete observing period. Instead we have to 
integrate the cross products r(t, 0m + ô6k) with a time-varying weight function h(t, t) which depends on the coherence span of the 
signal at the delay under consideration. We shall omit the reference to this time delay 8k = 0m + 06k or just indicate the time delay 
by an index k for ease of writing, but emphasize that the weights h depend on the time delay. We shall try to determine these weights 
in such a way that the ultimate variance of the estimates are minimized : 

rM = h(t, r)r(r)dr 

The signal ensemble mean value of this estimate is 

<rc(i)> = a<ei e*>A0 h(t, r)m*(r)dt 

(31) 

(32) 

As m the previous section m*(0, r) is taken to be a zero mean complex Gaussian process. The mean over signal and Moon ensembles 
of I rc fis 

«I rc I2», 
'-ib- 

r)h*(t, z')((r(T)r*(T')))mdrdr' 

= ^<|m|2>, 
'Í 

h(t, r)h*(t, t')pb(t - z')drdr' + erg T0 \h(t, t) 12 dz . (33) 

In computing the best weights by minimizing the variance of the estimates of | rc |2 for the various delays it is possible to determine 
weight functions /i(t, t) which vary with time t in order to properly account for the end effects in the time interval T0. This could be 

un u deveI°Pll?g Pb^'. 7 T)in a Karhunen-Loève expansion (see, e.g., van Trees 1968) over this time interval. For simplicity we shall be satisfied here with a suboptimum estimator which is good as long as the coherence span of the Moon channel is short 
compared to T0. We therefore put 

h(t, t) = h(t — t) (34) 
With these simplifications the variance of the estimator of Ke^f)!2 (eq. [23]) when the signal correlation is absent, i.e., the 
background noise (corresponding to eq. [24]), is given by 

A2 io ° io0 dt dt' ff <h dz'hk(t - z)ht(t' - z)ht(t - T')hk(f - t'; 
[a2 A02<| mk |2>m|jhk(t - z)h*(t - T>Bk(T - z')dzdz'f (35) 
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In order to determine the minimum we introduce the power spectrum of the Moon channel fluctuations at delay k and for a delay 
smoothing interval AO as defined above, and the frequency spectrum of h(t) by H(f) and find that we must make 

,f IW)I4# 
lf|tf(/)l2wBk(/M/|2 

a minimum. By the Schwarz inequality it follows that we must choose 

|ff(/)|2=wBk(/) 
With this choice of weights we find for Ak : 

(36) 

(37) 

ao To 
(a2 A02<| mk |2> J2 J wik(f)df ' 

With the weights for each delay in inverse proportion to the variance, as in § III, we finally obtain for the overall variance : 

^ A2 
k = 0 

E KI"hl2>J: 

Lfc = o 
The final signal-to-noise ratio, replacing the coherent one of equation (10), becomes 

”o "o/c 

M I r -11/4 
A04 E <|mk|

2)2- w2
k(/)d/ 

k=0 i0 J J 

(38) 

(39) 

(40) 

This expression for the signal-to-noise ratio has the same form as for the coherent case, equation (10), except that the bandwidth B 
and the observing time T0 must be replaced, respectively, by 

B = V^hcoh » = (41) 
It is also instructive to write the ultimate signal-to-noise ratio in the form : 

Si ^2^ \/^coh ^coh / BT0 ^2) 

"o " Vd/,!2)^/^2) V bcoh tcoh ' 

In this form it is clear that the signal-to-noise ratio is first computed for the coherence bandwidth and coherence time available, and 
then there is an incoherent summation over the number of such coherence intervals both in frequency and in time. 

The product of the coherence bandwidth bcoh and the coherence time tcoh now has been given a precise definition in terms of the 
statistical properties of the Moon expressed in terms of the target scattering function: 

tcoh ícoh = Eo (
<|mg|2>m)2 A0 J <(/)#• (43) 

For a realistic assessment of lunar interferometer experiments all we have to do is to substitute the statistical properties of the 
lunar surface as a reflector of electromagnetic waves into the formulae derived. These properties are discussed in the next section. 

V. STATISTICAL PROPERTIES OF THE ROUGH MOON 

The functions describing the statistical properties of the Moon have been well studied in the case of backscattering (Evans and 
Hagfors 1968, chap. 5), but not for forward scattering as required here. It is, therefore, necessary to extrapolate as best we can from 
the backscatter data to the situation at hand. If we denote the time delay by 0, the corresponding backscatter time delay 0o (the 
maximum is 11.6 ms), expressed in terms of the offset angle </> introduced in § II, becomes 

0O = e/sin (d>/2). (44) 

The backscattering properties change with the wavelength of observation. For long wavelengths the Moon appears rather 
smooth, and most of the scattered energy comes from the immediate vicinity of the geometric reflection point. For shorter 
wavelengths the Moon becomes gradually rougher, and the quasi-specular returns give way to a more diffuse scattering. We shall 
assume, without very strong justification, that the scattering law at oblique angles at a frequency/is identical to the backscattering 
law at a frequency/0, properly scaled to account for the increased reflectivity at oblique angles, given by 

/o=/sinW>/2). (45) 

The Doppler width of the scattered signal can be related to the corresponding Doppler width of the backscattered signal through 
the relation: 

<5/d(0; /) = ¿/od| 
fa 

9 
sin (</>/2)’ / sin I (46) 

where ôfD(0; f) is the Doppler width of the Moon reflected signal at delay 6 and center frequency /, whereas ôfOD(0o; f0) is the 
corresponding backscatter Doppler width at backscatter delay 60 and backscatter center frequency f0. Figure 3 shows examples of 
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e = 77.£>±.5° 
RANGE = 9.28 ms 

DOPPLER FREQUENCY, cps 
Fig. 4 

Fig. 3.—The power vs. delay plots for backscatter from the Moon at a number of different wavelengths of observation 
Fig. 4.—Backscatter frequency spectra for various delays for a wavelength of observation of 23 cm, for two orthogonal linear polarizations 

backscattered power versus time delay for a number of different radar frequencies. Figure 4 gives an example of power spectra as a 
function of time delay for backscatter at one particular radar frequency. The analytic expression for Sf0D(60 ; /0) is 

(47) 

where 0O is the maximum backscatter time delay of 11.6 ms and where ôf0 max is the limb-to-limb Doppler width. 

VI. DISCUSSION 
Let us first discuss one procedure which may be followed in order best to detect interference fringes in lunar interferometer 

experiments and then as examples consider the prospects for the two specific experiments mentioned in § I. 
Assuming that the two antennas are appropriately pointed,the first step is to record the two signals/! and/2 in some form without 

serious distortion. The two complex signals must then be cross multiplied in order to form the quantities we have denoted by r(t, 9) 
and used to form rc in equations (6), (19), and (31). The delay 0 must be allowed to assume a large number of values, also values 
different from those corresponding to the time delay of any point on the Moon. These “ off the Moon ” delays are necessary in order 
to establish a noise baseline; see equation (23). The complex cross products are then Fourier analyzed over the complete observing 
interval T0 for all possible time delays, and the Fourier amplitudes are squared. This allows the convolution implied in equation (33) 
to be carried out as a straight multiplication of spectra. From this we obtain a two-dimensional array of numbers corresponding to 
time delay 9 and frequency offset/ From the assumed properties of the Moon, and from the geometry and frequency of observation 
the function wB(9, f) (the target function) is constructed, and the cross products of this assumed array and the observed array are 
computed, and the products are summed over all the cross products. This procedure is carried out with w^9, f) placed on the 
observed array at the known position of the Moon, and at a large number of positions where it is off the position of the Moon. The 
mean of the “ off Moon ” sums is then subtracted from the “ on Moon ” sum, and, if the latter value is significantly higher than the 
rms value of the “ off Moon ” sums, a detection of fringes may be said to have occurred. 

In the Jupiter case, we shall assume a frequency of observation of 25 MHz, and an offset angle 0 of 10°. The equivalent 
backscattering frequency is then 2.18 MHz. In Figure 3 the lowest backscattering power versus delay curve is for 50 MHz, and, if we 
are to approximate the initial spike of this curve with an exponential, the time constant would be —150 jus. We do not know how to 
extrapolate this to 2.18 MHz, and to be conservative, let us assume the same value of 150 ¿is there. Because of the forward-scatter 
geometry this translates to a time constant in our “target scattering function” of 13 //s. A typical value of the limb-to-limb Doppler 
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width of a backscatter signal at 25 MHz would be 0.6 Hz. Because of the forward-scatter geometry this will be reduced to 50 mHz. 
At a delay of 150 //s, equation (47) tells us that the Doppler width is only 16% of the maximum, or 8 mHz. From this we conclude 
that the coherence bandwidth bcoh is on the order of 80 kHz and that the coherence time icoh is on the order of 125 s. As we expect 
burst bandwidths on the order of 10 kHz and burst durations of 100 ms (see § II), it is clear that we can ignore all the complications 
of delay spread and time variation, and compute the signal-to-noise ratio for a single burst coherently as we did in § II. This 
experiment is, therefore, very promising. 

In the Orion H20 maser at 22 GHz the equivalent backscatter frequency at an offset angle of 45° is 8.42 GHz. At this frequency 
the equivalent time constant for an exponential power delay curve is ~ 310 jus. With the obliquity factor at 45° this is reduced to 119 
/lis (t0). A typical backscattering Doppler width at 22 GHz is 515 Hz (Sf0max), which is reduced by the obliquity factor to 197 Hz 
(<5/max)* We now assume that an exponential approximation to the initial returned power versus delay with a “ time constant ” of 119 
/is (t0), and rectangular power spectra of width given by equation (47) with ôf0 max replaced by 197 Hz(<5/max), 0O by 4.4 ms (0) and 90 
by 6. The rectangular approximation will give a suboptimum and hence conservative solution. For this particular case we find 

1 Í® ^coh^coh f— \/T * 
2y/nT00fmax V 

With the numerical values given above and in § II for this case we find for the signal-to-noise ratio : 

— = 51.8^7^ 
«0 

which is still quite respectable. 
Finally, we should add that the use of reduced bit multiplications and possible other nonoptimum schemes will further reduce the 

signal-to-noise ratio. Nevertheless, both the specific experiments discussed above look promising and should be attempted. If there 
are other extremely strong sources which might be candidates for lunar interferometry, we have established the complete data 
processing procedure and formulas to determine the ultimate signal-to-noise ratio in each case. 

We are indebted to A. E. E. Rogers for calling our attention to the possible application of this technique to the Orion maser and 
to P. Nicholson for many helpful discussions. NAIC operates the Arecibo Observatory under cooperative agreement with the 
National Science Foundation. One of us (T. H.) has been the recipient of an Alexander von Humboldt Foundation Award during 
the course of the work. 

APPENDIX A 

THE EFFECTIVE BASELINE 

From the triangle ACO in Figure 1 we have 

a 
sin A 

It follows that 

Rm _ K 
cos [(</> - A)/2] cos [(0 - A)/2] ’ 

cos [(</> + A)/2] 
Rr = a ;—   

(Al) 

(A2) 

and the difference in pathlength becomes 

AR = AO — BO = Rr[l - cos (0 - A)] . (A3) 

The angle A can be determined from the transcendental equation : 

cos [(0 — A)/2] = sin A . (A4) 
Rm 

Substitution of A = </>0 + e, where sin c/>0 = a/Rm allows us to solve equation (A4) by expanding to first order in e: 

= 2(a/ft J sin2 U4> - 4>o)/4] 
6 cos <t>0 - (a/2RJ sin [(0 - 0o)/2] 

From equation (A5) it is possible to show that € <^ </>0 for 0 < 80°. Since ÿ will probably be less than 80° for any practical lunar 
interferometry experiment, we can neglect e and expand equation (A3) to first order in </>0 to obtain : 

AR = Rm(l — cos </>) — 2a tan (</>/2) . (A6) 

The effective baseline D (AB in Fig. 1) can be determined from AR by D = (d/d(¡))(AR). Using equation (A6) we obtain equation (1). 
For more accurate and general results it appears to be necessary to solve equation (A4) numerically. 
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